团队介绍

labo1.png
  • 研究与开发
  • 工程与信息技术
  • 组装
  • 测试与证书
       更多...
iso-9001.jpg
岩心分析技术

 

岩心分析是认识油气层地质特征的必要手段,油气层的敏感性评价、损害机理研究、油气层损害的综合诊断、保护油气层技术方案的设计都必须建立在岩心分析的基础之上。所以,岩心分析是保护油气层技术系列中不可缺少的重要组成部分,也是保护油气层技术这一系统工程的起始点。

 

第一节 岩心分析概述

一、岩心分析的目的意义

1.岩心分析的目的:

(1)全面认识油气层的岩石物理性质及岩石中敏感性矿物的类型、产状、含量及分布特点;

(2)确定油气层潜在损害类型、程度及原因;

(3)为各项作业中保护油气层工程方案设计提供依据和建议。

2.岩心分析的意义

保护油气层技术的研究与实践表明,油气层地质研究是保护油气技术的基础工作,而岩心分析在油气地质研究中具有重要作用。

油气层地质研究的目的是准确地认识油气层的初始状态及钻开油气层后油气层对环境变化的响应,即油气层潜在损害类型及程度,其内容包括六个方面:

(1)矿物性质,特别是敏感性矿物的类型、产状和含量;

(2)渗流多孔介质的性质,如孔隙度、渗透率、裂隙发育程度、孔隙及喉道的大小、形态、分布和连通性;

(3)岩石表面性质,如比表面、润湿性等;

(4)地层流体性质,包括油、气、水的组成,高压物性、析蜡点、凝固点、原油酸值等;

(5)油气层所处环境,考虑内部环境和外部环境两个方面;

(6)矿物、渗流介质、地层流体对环境变化的敏感性及可能的损害趋势和后果。

其中,矿物性质及渗流多孔介质的特性主要是通过岩心分析获得,从而体现了岩心分析在油气地质研究中的核心作用。

还应指出,室内敏感性评价和工作液筛选使用的岩心数量有限,不可能全部考虑油气层物性及敏感性矿物所表现出来的各种复杂情况,岩心分析则能够确定某一块实验岩样在整个油气层中的代表性,进而可通过为数不多的实验结果,建立油气层敏感性的整体轮廓,指导保护油气层工作液的研制和优选。

二、岩心分析的内容

岩心分析是指利用各种仪器设备来观测和分析岩心一切特性的系列技术。岩心是地下岩石(层)的一部分,所以岩心分析是获取地下岩石信息的十分重要的手段。表1给出了保护油气层研究中岩心分析的内容及相应的技术方法。应用中要根据具体的油气层特点进行选择分析,做到既能抓住主要矛盾,解决实际问题,又要经济实用,注意发挥不同技术的优点,配套实施。

三、取样要求

岩心分析的样品可以来自全尺寸成形的岩心、也可以是井壁取心或钻屑。经验表明,钻屑的代表性很差,故通常使用成形岩心,而且多个实验项目可以进行配套分析,便于找出岩石各种参数之间的内在联系。

岩石结构与矿物分析、孔隙结构的测定要在了解油气层岩性、物性、含油气性、电性的基础上,有重点地进行选样分析。

铸体薄片的样品应能包括油气层剖面上所有岩石性质的极端情况,如粒度、颜色、胶结程度、结核、裂缝、针孔、含油级别等,样品间距1~5块/ m,必要时加密。X射线衍射(XRD)的扫描电镜(SEM)分析样品密度大约为铸体薄片的1/3至1/2,对油气层要加密,水层及夹层进行控制性分析。压汞分析的岩样,对于一个油组(或厚油层),每个渗透率级别至少有3~5条毛管压力曲线,最后可根据物性分布求取该油组的平均毛管压力曲线。

 

 

 

电子探针分析可用其它柱塞端部,这样在所有分析项目完成后,就能指出潜在的损害类型及原因,预测不同渗透率级别(储层类型)的油气层的敏感程度,正确解释敏感性评价实验结果。

表1 岩心分析揭示的内容及所用的方法

内 容

方 法

岩石物理性质

常规物性

孔隙度

常规条件

总孔隙度、

连通孔隙度

气测法、煤矿油饱和法孔隙度仪

模拟围压

总孔隙度

全自动岩心分析仪

渗透率

空气渗透率、煤油渗透率、地层水渗透率;水平渗透率、垂直渗透率、径向渗透率、全直径岩心渗透率;模拟围压渗透率

渗透率仪

全自动岩心分析仪

比表面

 

压汞或等温吸附法

相渗透率

气-水、油-气、气-油-水

稳态法、不稳态法

润湿性

油湿、水湿、中间润湿

接触角测量、阿莫特(自吸人)法、离心机法毛管压力曲线测定

孔隙结构

孔隙-喉道

类型、大小、形态、连通性、分布

铸体薄片、图象分析、SEM、X射线、CT扫描、NMR

孔喉

大小、分布

压汞法、离心机法毛管压力曲线测定

岩石结构与矿物

骨架颗粒

石英、长石岩屑、云母

粒度大小、分布

筛析法、薄片粒度图象分析

接触关系、成分、含量、成岩变化

铸体薄片、阴极发光、XRD全岩分析、红外光谱

填隙物

粘土矿物

产状

铸体薄片、SEM

类型、成分、含量

铸体薄片、XRD、红外光谱、沉降分离法、电子探针或能谱

非粘土矿物

产状

岩石薄片、SEM

类型、成分、含量

薄片染色、XRD全岩分析、红外光谱、碳酸盐含量测定

 

第二节 岩心分析技术及应用

一、X射线衍射

1. X射线衍射分析技术

全岩矿物组分和粘土矿物可用X射线衍射(XRD)迅速而准确地测定。XRD分析借助于X射线衍射仪来实现,它主要由光源、测角仪、X射线检测和记录仪构成。

由于粘土矿物的含量较低,砂岩中一般3%~15%。这时,X射线衍射全岩分析不能准确地反映粘土的组成与相对含量,需要把粘土矿物与其它组分分离,分别加以分析。首先将岩样抽提干净,然后碎样,用蒸馏水浸泡,最好湿式研磨,并用超声波振荡加速粘土从颗粒上脱落,提取粒径小于2μm(泥、页岩)或小于5μm(砂岩)的部分,沉降分离、烘干、计算其占岩样的重量百分比。 

粘土矿物的XRD分析使用定向片,包括自然干燥的定向片(N片)、经乙二醇饱和的定向片(再加热至550℃),或盐酸处理之后的自然干燥定向片。粒径大于2μm或5μm的部分则研磨至粒径<40μm的粉末,用压片法制片,上机分析。此外还可以直接进行薄片的XRD分析,它对于鉴定疑难矿物十分方便,并可与薄片中矿物的光性特征对照,进行综合分析。

2. X射线衍射在保护油气层中的应用

1)地层微粒分析

2)全岩分析

3)粘土矿物类型鉴定和含量计算

4)间层矿物鉴定和间层比计算

5)无机垢分析

二、扫描电镜

1. 扫描电镜分析技术

扫描电镜(SEM)分析能提供孔隙内充填物的矿物类型、产状的直观资料,同时也是研究孔隙结构的重要手段。扫描电镜通常由电子系统、扫描系统、信息检测系统、真空系统和电源系统五大部分构成,它是利用类似电视摄影显象的方式,用细聚焦电子束在样品表面上逐点进行扫描,激发产生能够反映样品表面特征的信息来调制成象。有些扫描电镜配有X射线能谱分析仪,因此能进行微区元素分析。

扫描电镜分析具有制样简单、分析快速的特点。分析前要将岩样抽提清洗干净,然后加工出新鲜面作为观察面,用导电胶固定在样品于桩上,自然晾干,最后在真空镀膜机上镀金(或碳),样品直径一般不超过1cm。

近年来,在扫描电镜样品制备方面取得了显著的进展。临界点干燥法可以详细地观察原状粘土矿物的显微结构,背散射电子图象的使用能够在同一视域中直接识别不同化学成分的各种矿物。

2. 扫描电镜在保护油气层中的应用

1)油气层中地层微粒的观察

2)粘土矿物的观测

3)油气层孔喉的观测

4)含铁矿物的检测

5)油气层损害的监测

三、薄片技术

1. 薄片分析技术

薄片技术是保护油气层的岩相学分析三大常规技术之一,也是最基础的一项分析。应用光学显微镜观察薄片,由铸体薄片获得的资料比较可靠。制作铸体薄片的样品最好是成形岩心,不推荐使用钻屑。薄片厚度为0.03mm,面积不小于15mm×15mm。未取心的情况除外,建议少用或不用钻屑薄片,因为岩石总是趋于沿弱连接处破裂,胶结致密的岩块则能保持较大的尺寸,这样会对孔隙发育及胶结状况得出错误的认识。

2. 薄片分析技术在保护油气层中的应用

1)岩石的结构与构造

2)骨架颗粒的成分及成岩作用

3)孔隙特征

4)不同产状粘土矿物含量的估计

5)荧光薄片应用

四、压汞法测定岩石毛管压力曲线

由毛管压力曲线可以获得描述孔喉分布及大小的系列特征参数,确定各孔喉区间对渗透率的贡献。

1. 基本原理

压汞法由于其仪器装置固定、测定快速准确,并且压力可以较高,便于更微小的孔隙测量,因而它是目前国内外测定岩石毛细管压力曲线的主要手段。使用压汞仪测定岩样的毛细管压力曲线,原理是汞对大多数造岩矿物为非润湿,对汞施加压力后,当汞的压力和孔喉的毛管压力相等时,汞就能克服阻力进入孔隙,计量进汞量和压力,根据进入汞的孔隙体积百分数和对应压力就得到毛细管压力曲线。
压汞试验所用岩样一般为直径2.5cm,长2.5cm左右的柱塞,测定前将油清洗干净,测定岩石总体积、氦气法孔隙度、岩石密度和渗透率。

2. 毛细管压力曲线在保护油气层中的应用

1)储集岩的分类评价

储集岩分类是评价油气层损害的前提,同一损害因素在不同类型的储集岩中的表现存在差异。根据毛细管压力的曲线特征参数,用统计法求特征值,结合岩石孔隙度、渗透率、孔隙类型、岩性等可以对储集岩进行综合分类。

2)油气层损害机理分析

油气层微粒的粒度分析、微粒在孔隙中的空间分布及与孔喉大小的匹配关系是分析油气层损害的关键。例如相同间层比的伊利石/蒙皂石间层矿物,对细孔喉型油层的水敏损害比中、粗孔喉型油气层严重。

3)钻井完井液设计

屏蔽暂堵型钻井完井液技术中架桥粒子的选择,就是依据由压汞曲线获得的孔喉分布。通过对一个油组或油气层不同物性级别岩样的毛管压力曲线测定,构制平均毛管压力曲线。架桥粒子即根据平均毛管压力曲线,考虑到出现的最大孔喉半径,安2/3架桥原理设计的。暂堵型酸化、压裂过程中,暂堵剂粒度的筛选也要参考孔喉分布数据。

4)入井流体悬浮固相控制

压井液、洗井液、射孔液、修井液、注入水和压裂液等都涉及固相颗粒的含量和粒径大小控制问题,而控制标准则视油气层储渗质量、孔喉参数而定。研究表明,当颗粒直径大于平均孔喉直径的1/3时,形成外泥饼,1/3~1/10时会侵入孔喉形成内泥饼,小于1/10时颗粒能自由移动。

5)评价和筛选工作液

油气层损害的实质是岩石孔隙结构的改变,通过测定岩石与工作液作用前后的岩样毛管压力曲线就能对配伍性有明确的认识。应用高速离心机法可以快速测定毛管压力曲线,了解工作液作用前后储集岩孔喉分布参数和润湿性变化。

五、岩心分析技术应用展望

尽管用于分析岩心的许多技术早已存在,但石油地质家及石油工程师从未像今天这样共同关心并应用岩心分析技术来深入揭示油气层的微观特性。一些传统技术因使用目的转变,被赋与了新的含义。

1.傅里叶变换红外光谱分析

2.CT扫描技术

将医学上应用的CT扫描技术引人到岩心分析中,主要原理是用X射线照射岩心,得到岩心断面上岩石颗粒密度的信息,经计算机处理转换成岩心剖面图,它可以在不改变岩石形态及内部结构的条件下观察岩石的裂缝和孔隙分布。当固相物侵入岩心时,能够对固相侵入深度及其在孔喉中的状态进行监测,也可以观察岩样与工作液作用后的孔隙空间变化。目前这项技术主要用于高渗透疏松砂岩和裂缝性储层的损害研究中,如出砂机理、稠油蚯蚓孔道的形成、侵入裂缝的固相分布、岩心内泥饼的分布形态等。

3.核磁共振成象技术

简称NMRI,它能够观测孔隙或裂缝中流体分布与流动情况,因此对于流体与流体之间,流体与岩石之间的相互作用,以及润湿性和润湿反转问题的研究有特殊意义,是研究油气损害的最新手段之一。NMRI测井技术发展很快,主要用于剩余油的分布探测,已成为提高采收率的重要评价技术。

4.扫描电镜技术

扫描电镜技术在制样和配件方面发展较快,在SEM上配置能谱仪(EDS)可以对矿物提供半定量元素分析,对敏感性矿物的识别及损害机理研究有很大的帮助。背散射仪的应用免除镀膜对粘土形貌的改变,更宜于试验前后的样品观察。此外,临界点冷冻干燥法,能够揭示粘土矿物在油气层条件下的真实形态。扫描电镜与图象分析仪使用,研究粘土矿物微结构并预测微结构的稳定性,是油井完井技术中心近年来将土壤科学和工程地质理论引入到石油工程中的最新进展。

5.非晶态矿物和纳米矿物学研究

6.环境扫描电镜的应用

一般扫描电镜要求在真空条件下进行实验,而环境扫描电镜则可以在气体、液体介质环境下分析样品。国外已开始利用此项技术研究膨胀性粘土矿物与工作液作用的机理,分析粘土矿物间层比和遇水膨胀的关系、水化膨胀和脱水过程的差异等。因此,环境扫描电镜是损害机理研究和工作液评价的有力手段。目前,我国已引进了这种仪器。

综上所述,岩心分析技术在认识油气层特征、研究油气层损害机理及保护油气层工程设计中具有广泛的应用。每种技术都有其优点及局限性,实际工作中要具体问题具体分析,并制定一套切实可行的技术路线。各项技术本身在石油工程中的应用还有秀大的潜力尚待开发,同时工程实践中也不断提高许多新问题,需要创造性地应用先进技术来解决。

 

第三节 油气层潜在损害因素分析

 

岩心分析的直接应用就是潜在损害因素研究。油气层的潜在损害与其储渗空间特性、敏感性矿物,岩石表面性质、地层流体性质有关,同时还受外来流体和环境因素的影响。

一、油气层储渗空间

碎屑岩油气层的储集空间主要是孔隙,渗流通道主要是喉道。喉道是指两个颗粒间连通的狭窄部分,是易受损害的敏感部位。孔隙和喉道的几何形态、大小、分布及其连通关系,称为油气层的孔隙结构。对于裂缝型储层,天然裂缝既是储集空间又是渗流通道。根据基块孔隙和裂缝的渗透率贡献大小,可以划分出一些过渡储层类型。孔隙结构是从微观角度来描述油气层的储渗特性,而孔隙度与渗透率则是从宏观角度来描述油气层的储渗特性。

1. 孔隙度和渗透率

孔隙度是衡量岩石储集空间多少及储集能力大小的参数,渗透率是衡量油气层岩石渗流能力大小的参数,它们是从宏观上表征油气层特性的两个基本参数。其中与油气层损害关系比较密切的是渗透率,因为它是孔喉的大小、均匀性和连通性三者的共同体现。对于一个渗透性很好的油气层来说,它的孔喉较大并较均匀,连通性好,胶结物含量低,这样它受固相侵入损害的可能性也更大;相反,对于一个低渗透性油气层来说,由于它的孔喉小、连通性差、胶结物含量较高,这样它容易受到粘土矿物水化膨胀、分散运移、水锁和贾敏损害。

2. 储层孔隙结构

油气层常见孔隙类型有:粒间孔、粒内溶孔、晶间微孔。碎屑岩储层通常粒间孔的含量越高,储层物性越好。一般将油气层喉道类型划分为五种(缩颈喉道、点状喉道、片状喉道、弯片状喉道、管束状喉道),颗粒接触类型和胶结类型决定了喉道几何形态。
孔隙结构参数从定量角度来描述孔喉特征。常用的孔隙结构参数有孔喉尺寸及其分布、喉道弯曲度和孔隙连通性。利用统计分布的方法,可以从毛管压力曲线和物性参数中求出任一岩样的孔隙结构参数,乃至油层段的孔隙结构参数平均值。

孔隙结构与油气层损害的关系表现为:

(1)在其它条件相同的情况下,喉道越粗,不匹配的固相颗粒侵入的深度就越大,造成的固相损害程度就越严重。但滤液侵入造成的水锁、贾敏等损害的可能性较小。

(2)孔喉弯曲程度越大,外来固相颗粒侵入越困难,侵入深度变小;而地层微粒易在喉道中阻卡,微粒分散/运移的损害潜力增加。

(3)孔隙和喉道尺寸越小且连通性越差,油气层越易受到与流体、界面现象相关的损害,如水锁、贾敏、乳化堵塞、粘土矿物水化膨胀等。

二、油气层敏感性矿物

1.敏感性矿物的定义和特点

2.敏感性矿物的类型

3.砂岩储层粘土矿物的产状 

三、油气层岩石的润湿性

岩石表面被液体润湿(铺展)的情况称为岩石的润湿性。岩石的润湿性一般可分为亲水性、亲油性和两性润湿三大类。油气层岩石的润湿性取决于矿物的晶体结构、地层流体的活性组分性质,工作液侵入也可以改变岩石的润湿性。润湿性的作用表现为下列方面。

(1)控制孔隙中油气水分布。对于亲水性岩石,水通常吸附于颗粒表面或占据小孔隙角隅,油气则占孔隙中间部位;对于亲油性岩石,刚好出现相反的现象。

(2)决定岩石孔道中毛管压力的大小和方向。毛管压力的方向总是指向非润湿相一方。当岩石表面亲水时,毛管压力是水驱油的动力;当岩石表面亲油时,毛管力是水驱油的阻力。

(3)制约微粒运移的损害程度。当油气层中流动的流体润湿微粒时,微粒容易随之运移,否则微粒难以运移。油气层岩石的润湿性的前两个作用,可造成有效渗透率下降和采收率降低,而后一作用对微粒运移有较大影响。

四、油气层流体性质

1.地层水性质

地层水性质主要指矿化度、离子类型和含量、pH值和水型等。当油气层压力和温度降低或侵入流体与地层水不配伍时,会生成CaCO3、CaSO4、BaSO4等无机垢;高矿化度地层水还可引起进入油气层的高分子处理剂发生盐析。此外,对于室内实验流体配制、工作液基液的选择、防垢抑垢剂的筛选、除垢工艺的优化,地层水资料都是重要依据。

2.原油性质

原油性质主要包括粘度、含蜡量、胶质、沥青、析蜡点和凝固点。原油性质对油气层损害的影响有:(1)石蜡、胶质和沥青可能形成有机沉淀,堵塞喉道、射孔孔眼、砾石充填层、筛管和油管;(2)原油与入井流体不配伍形成高粘乳状液,胶质沥青质与酸液作用形成酸渣;(3)注水和压裂中的冷却效应还可以导致石蜡、沥青在井间地层中沉积。

3.天然气性质

与损害有关的天然气性质主要是相态特征和H2S、CO2腐蚀气体的含量。相态特征主要是针对凝析气藏而言,当开采时压差过大、或气藏压力衰竭时,井底压力低于露点压力,此时凝析液在井筒附近积聚,使气相渗透率大大降低,形成油相圈闭。腐蚀性气体的作用是设备腐蚀产生微粒,如H2S在腐蚀过程中形成FeS沉淀,造成井下和井口管线的堵塞。

五、油气藏环境

地层损害是在特定的环境下发生的。内部环境包括油气藏温度、压力、原地应力和天然驱动能量;外部环境有工作液的流速、化学性质、固相颗粒分布、压差、流体的温度等。表2—7总结了常见的潜在损害方式及预防处理措施,表明只有综合分析岩石物理性质(基块和裂缝储渗性能参数)、岩石学特征、地层流体性质、内部环境和外部环境,才能全面地把握某一油气藏的潜在损害因素,正确指导保护工艺技术的设计。

应当指出,油气层潜在损害因素在某一特定的时间段内是油气层相对固有特性。当油气层被钻开以后,由于受外部环境的影响,它的孔隙结构、敏感性矿物、岩石润湿性和油气水性质都会发生变化。因此油气层潜在损害因素在不同的生产作业阶段是动态变化的。

过去以钻井完井损害控制为重点,对于油藏环境因素关注不够。随着保护储层技术重点向注水开发、EOR过程和非常规油气藏转移,将更多地关注环境因素,如时间(t)、温度(T)、压力(P)或应力(St)。开发过程周期长,损害的累积性和叠加性均是时间的反映。温度效应在深井超深井作业和注蒸汽稠油开采中显得特别突出。压力(或应力)的影响在裂缝性油气藏和疏松砂岩油藏表现明显,应力敏感性和油藏压实已经引起重视。